Extended Skyrme interactions for nuclear matter, finite nuclei, and neutron stars
Abstract
Recent progress in theory, experiment, and observation challenges the mean-field models by using the conventional Skyrme interaction, suggesting that the extension of the conventional Skyrme interaction is necessary. In this work, by fitting the experimental data of a number of finite nuclei together with a few additional constraints on nuclear matter using the simulated annealing method, we construct three Skyrme interaction parameter sets; namely, eMSL07, eMSL08, and eMSL09, based on an extended Skyrme interaction which includes additional momentum and density-dependent two-body forces to effectively simulate the momentum dependence of the three-body force. The three new interactions (i) can reasonably describe the ground-state properties and the isoscalar giant monopole resonance energies of various spherical nuclei used in the fit as well as the ground-state properties of many other spherical nuclei, (ii) nicely conform to the current knowledge on the equation of state of asymmetric nuclear matter, (iii) eliminate the notorious unphysical instabilities of symmetric nuclear matter and pure neutron matter up to a very high density of 1.2 fm-3 , and (iv) simultaneously support heavier neutron stars with mass larger than two times the solar mass. One important difference of the three new interactions involves the prediction of the symmetry energy at supra-saturation densities, and these new interactions are thus potentially useful for the future determination of the largely uncertain high-density symmetry energy. In addition, the predictions of nuclear matter, finite nuclei, and neutron stars made using the three new interactions are compared with those made using the three typical interactions BSk22, BSk24, and BSk26 from the Brussels group.
- Publication:
-
Physical Review C
- Pub Date:
- December 2016
- DOI:
- arXiv:
- arXiv:1510.06459
- Bibcode:
- 2016PhRvC..94f4326Z
- Keywords:
-
- Nuclear Theory;
- Astrophysics - Solar and Stellar Astrophysics;
- Nuclear Experiment
- E-Print:
- 18 pages, 6 figures, 5 tables. Results and discussions added. Accepted version to appear in PRC