Periodic solutions for the non-local operator (-Delta + m^2)^s - m^(2s) with m>=0
Abstract
By using variational methods we investigate the existence of T-periodic solutions to [(-Delta_x + m^2)^s -m^(2s)]u= f(x,u) in (0,T)^N u(x+Te_i)=u(x) for all x in R^N, i=1,...,N where s in (0,1), N>2s, T>0, m>=0 and f(x,u) is a continuous function, T-periodic in x, verifying the Ambrosetti-Rabinowitz condition and a polynomial growth at rate p in (1, (N+2s)/(N-2s)).
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2015
- DOI:
- 10.48550/arXiv.1510.05808
- arXiv:
- arXiv:1510.05808
- Bibcode:
- 2015arXiv151005808A
- Keywords:
-
- Mathematics - Analysis of PDEs
- E-Print:
- Topol. Methods Nonlinear Anal. 49 (2017), no. 1, 75-104