Optimal Sup-norm Rates and Uniform Inference on Nonlinear Functionals of Nonparametric IV Regression
Abstract
This paper makes several important contributions to the literature about nonparametric instrumental variables (NPIV) estimation and inference on a structural function $h_0$ and its functionals. First, we derive sup-norm convergence rates for computationally simple sieve NPIV (series 2SLS) estimators of $h_0$ and its derivatives. Second, we derive a lower bound that describes the best possible (minimax) sup-norm rates of estimating $h_0$ and its derivatives, and show that the sieve NPIV estimator can attain the minimax rates when $h_0$ is approximated via a spline or wavelet sieve. Our optimal sup-norm rates surprisingly coincide with the optimal root-mean-squared rates for severely ill-posed problems, and are only a logarithmic factor slower than the optimal root-mean-squared rates for mildly ill-posed problems. Third, we use our sup-norm rates to establish the uniform Gaussian process strong approximations and the score bootstrap uniform confidence bands (UCBs) for collections of nonlinear functionals of $h_0$ under primitive conditions, allowing for mildly and severely ill-posed problems. Fourth, as applications, we obtain the first asymptotic pointwise and uniform inference results for plug-in sieve t-statistics of exact consumer surplus (CS) and deadweight loss (DL) welfare functionals under low-level conditions when demand is estimated via sieve NPIV. Empiricists could read our real data application of UCBs for exact CS and DL functionals of gasoline demand that reveals interesting patterns and is applicable to other markets.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2015
- DOI:
- 10.48550/arXiv.1508.03365
- arXiv:
- arXiv:1508.03365
- Bibcode:
- 2015arXiv150803365C
- Keywords:
-
- Statistics - Methodology;
- Economics - Econometrics
- E-Print:
- This paper is a major extension of Sections 2 and 3 of our Cowles Foundation Discussion Paper CFDP1923, Cemmap Working Paper CWP56/13 and arXiv preprint arXiv:1311.0412 [math.ST]. Section 3 of the previous version of this paper (dealing with data-driven choice of sieve dimension) is currently being revised as a separate paper