Explicit formulas of the Bergman kernel for some Reinhardt domains
Abstract
In this paper we obtain the closed forms of some hypergeometric functions. As an application, we obtain the explicit forms of the Bergman kernel functions for Reinhardt domains $\{|z_3|^{\lambda} < |z_1|^{2p} + |z_2|^2, \quad |z_1|^{2p} + |z_2|^2 < |z_1|^{p} \}$ and $\{|z_4|^{\lambda} < (|z_1|^2 + |z_2|^2)^{p} + |z_3|^2, \quad (|z_1|^2 + |z_2|^2)^{p} + |z_3|^2 < (|z_1|^2 + |z_2|^2 )^{p/2} \}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2015
- DOI:
- 10.48550/arXiv.1507.05879
- arXiv:
- arXiv:1507.05879
- Bibcode:
- 2015arXiv150705879B
- Keywords:
-
- Mathematics - Complex Variables;
- 32A25;
- 33D70
- E-Print:
- 9 pages