The Bargmann transform and powers of harmonic oscillator on Gelfand-Shilov subspaces
Abstract
We consider the counter images H♭(Rd) and H0,♭(Rd) of entire functions with exponential and almost exponential bounds, respectively, under the Bargmann transform, and we characterize them by estimates of powers of the harmonic oscillator. We also consider the Pilipović spaces Ss(Rd) and Σs(Rd) when 0<s<1/2 and deduce their images under the Bargmann transform.
- Publication:
-
Revista Real Acad. Ciencias Exact. Fis. Nat. Madrid
- Pub Date:
- January 2017
- DOI:
- 10.1007/s13398-015-0273-z
- arXiv:
- arXiv:1507.04850
- Bibcode:
- 2017RvMad.111....1F
- Keywords:
-
- Bargmann transform;
- Harmonic oscillator;
- Gelfand–Shilov spaces;
- 46F05;
- 42B35;
- 30Gxx;
- 44A15;
- Mathematics - Functional Analysis
- E-Print:
- 14 pages