$L^2(H^1_\gamma)$ Finite Element Convergence for Degenerate Isotropic Hamilton-Jacobi-Bellman Equations
Abstract
In this paper we study the convergence of monotone $P1$ finite element methods for fully nonlinear Hamilton-Jacobi-Bellman equations with degenerate, isotropic diffusions. The main result is strong convergence of the numerical solutions in a weighted Sobolev space $L^2(H^1_\gamma(\Omega))$ to the viscosity solution without assuming uniform parabolicity of the HJB operator.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2015
- DOI:
- 10.48550/arXiv.1507.00140
- arXiv:
- arXiv:1507.00140
- Bibcode:
- 2015arXiv150700140J
- Keywords:
-
- Mathematics - Numerical Analysis;
- Mathematics - Optimization and Control;
- 65M12;
- 65M60;
- 49L25;
- 49M25