A sufficient condition for a balanced bipartite digraph to be hamiltonian
Abstract
We describe a new type of sufficient condition for a balanced bipartite digraph to be hamiltonian. Let $D$ be a balanced bipartite digraph and $x,y$ be distinct vertices in $D$. $\{x, y\}$ dominates a vertex $z$ if $x\rightarrow z$ and $y\rightarrow z$; in this case, we call the pair $\{x, y\}$ dominating. In this paper, we prove that a strong balanced bipartite digraph $D$ on $2a$ vertices contains a hamiltonian cycle if, for every dominating pair of vertices $\{x, y\}$, either $d(x)\ge 2a-1$ and $d(y)\ge a+1$ or $d(x)\ge a+1$ and $d(y)\ge 2a-1$. The lower bound in the result is sharp.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2015
- DOI:
- 10.48550/arXiv.1506.07949
- arXiv:
- arXiv:1506.07949
- Bibcode:
- 2015arXiv150607949W
- Keywords:
-
- Mathematics - Combinatorics;
- 05CXX
- E-Print:
- 12 pages, 3 figures