Recovering metric from full ordinal information
Abstract
Given a geodesic space (E, d), we show that full ordinal knowledge on the metric d-i.e. knowledge of the function D d : (w, x, y, z) $\rightarrow$ 1 d(w,x)$\le$d(y,z) , determines uniquely-up to a constant factor-the metric d. For a subspace En of n points of E, converging in Hausdorff distance to E, we construct a metric dn on En, based only on the knowledge of D d on En and establish a sharp upper bound of the Gromov-Hausdorff distance between (En, dn) and (E, d).
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2015
- DOI:
- 10.48550/arXiv.1506.03762
- arXiv:
- arXiv:1506.03762
- Bibcode:
- 2015arXiv150603762L
- Keywords:
-
- Statistics - Machine Learning;
- Mathematics - Statistics Theory