Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks
Abstract
Recurrent Neural Networks can be trained to produce sequences of tokens given some input, as exemplified by recent results in machine translation and image captioning. The current approach to training them consists of maximizing the likelihood of each token in the sequence given the current (recurrent) state and the previous token. At inference, the unknown previous token is then replaced by a token generated by the model itself. This discrepancy between training and inference can yield errors that can accumulate quickly along the generated sequence. We propose a curriculum learning strategy to gently change the training process from a fully guided scheme using the true previous token, towards a less guided scheme which mostly uses the generated token instead. Experiments on several sequence prediction tasks show that this approach yields significant improvements. Moreover, it was used successfully in our winning entry to the MSCOCO image captioning challenge, 2015.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2015
- DOI:
- 10.48550/arXiv.1506.03099
- arXiv:
- arXiv:1506.03099
- Bibcode:
- 2015arXiv150603099B
- Keywords:
-
- Computer Science - Machine Learning;
- Computer Science - Computation and Language;
- Computer Science - Computer Vision and Pattern Recognition