On Elliptic Equations and Systems involving critical Hardy-Sobolev exponents (non-limit case)
Abstract
Let $\Omega\subset \R^N$ ($N\geq 3$) be an open domain (may be unbounded) with $0\in \partial\Omega$ and $\partial\Omega$ be of $C^2$ at $0$ with the negative mean curvature $H(0)$. By using variational methods, we consider the following elliptic systems involving multiple Hardy-Sobolev critical exponents, $$\begin{cases} -\Delta u+\lambda^*\frac{u}{|x|^{\sigma_0}}-\lambda_1 \frac{|u|^{2^*(s_1)-2}u}{|x|^{s_1}}=\lambda \frac{1}{|x|^{s_2}}|u|^{\alpha-2}u|v|^\beta\quad &\hbox{in}\;\Omega,\\ -\Delta v+\mu^*\frac{v}{|x|^{\eta_0}}-\mu_1 \frac{|v|^{2^*(s_1)-2}v}{|x|^{s_1}}=\mu \frac{1}{|x|^{s_2}}|u|^{\alpha}|v|^{\beta-2}v\quad &\hbox{in}\;\Omega,\\ (u,v)\in D_{0}^{1,2}(\Omega)\times D_{0}^{1,2}(\Omega), \end{cases}$$ where $ 0\leq \sigma_0, \eta_0, s_2<2, s_1\in (0,2);$ the parameters $ \lambda^*\neq 0, \mu^*\neq 0, \lambda_1>0, \mu_1>0, \lambda\mu>0$; $\alpha,\beta>1$ satisfying $\alpha+\beta \leq 2^*(s_2)$. Here, $2^*(s):=\frac{2(N-s)}{N-2}$ is the critical Hardy-Sobolev exponent. We obtain the existence and nonexistence of ground state solution under different specific assumptions. As the by-product, we study \be\lab{zou=a1} \begin{cases} &\Delta u+\lambda \frac{u^p}{|x|^{s_1}}+\frac{u^{2^*(s_2)-1}}{|x|^{s_2}}=0\;\quad \hbox{in}\;\Omega,\\ &u(x)>0\;\hbox{in}\;\Omega,\\ & u(x)=0\;\hbox{on}\;\partial\Omega, \end{cases} \ee we also obtain the existence and nonexistence of solution under different hypotheses. In particular, we give a partial answers to a generalized open problem proposed by Y. Y. Li and C. S. Lin (ARMA, 2012). Around the above two types of equation or systems, we systematically study the elliptic equations which have multiple singular terms and are defined on any open domain. We establish some fundamental results. \vskip0.23in {\it Key words:} Elliptic system, Ground state, Hardy-Sobolev exponent.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2015
- DOI:
- 10.48550/arXiv.1505.07392
- arXiv:
- arXiv:1505.07392
- Bibcode:
- 2015arXiv150507392X
- Keywords:
-
- Mathematics - Analysis of PDEs
- E-Print:
- 64 pages