The bi-Hamiltonian cohomology of a scalar Poisson pencil
Abstract
We compute the bi-Hamiltonian cohomology of an arbitrary dispersionless Poisson pencil in a single dependent variable using a spectral sequence method. As in the KdV case, we obtain that $BH^p_d(\hat{F}, d_1,d_2)$ is isomorphic to $\mathbb{R}$ for $(p,d)=(0,0)$, to $C^\infty (\mathbb{R})$ for $(p,d)=(1,1)$, $(2,1)$, $(2,3)$, $(3,3)$, and vanishes otherwise.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2015
- DOI:
- arXiv:
- arXiv:1505.03894
- Bibcode:
- 2015arXiv150503894C
- Keywords:
-
- Mathematics - Differential Geometry;
- Mathematical Physics;
- Nonlinear Sciences - Exactly Solvable and Integrable Systems
- E-Print:
- Bull. Lond. Math. Soc. 48 (2016), no. 4, 617-627