Luna's fundamental lemma for diagonalizable groups
Abstract
We study relatively affine actions of a diagonalizable group $G$ on locally noetherian schemes. In particular, we generalize Luna's fundamental lemma when applied to a diagonalizable group: we obtain criteria for a $G$-equivariant morphism $f: X'\to X$ to be $strongly\ equivariant$, namely the base change of the morphism $f/\!/G$ of quotient schemes, and establish descent criteria for $f/\!/G$ to be an open embedding, étale, smooth, regular, syntomic, or lci.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2015
- DOI:
- 10.48550/arXiv.1505.00754
- arXiv:
- arXiv:1505.00754
- Bibcode:
- 2015arXiv150500754A
- Keywords:
-
- Mathematics - Algebraic Geometry
- E-Print:
- 40 pages, comments are welcome. arXiv admin note: substantial text overlap with arXiv:1407.2629