Light propagation and emission in complex photonic media
Abstract
We provide an introduction to complex photonic media, that is, composite materials with spatial inhomogeneities that are distributed over length scales comparable to or smaller than the wavelength of light. This blossoming field is firmly rooted in condensed matter physics, in optics, and in materials science. Many stimulating analogies exist with other wave phenomena such as sound and seismology, X-rays, neutrons. The field has a rich history, which has led to many applications in lighting, novel lasers, light harvesting, microscopy, and bio optics. We provide a brief overview of complex photonic media with different classes of spatial order, varying from completely random to long-periodically ordered structures, quasi crystalline and aperiodic structures, and arrays of cavities. In addition to shaping optical waves by suitable photonic nanostructures, the realization is quickly arising that the spatial shaping of optical wavefronts with spatial light modulators dramatically increases the number of control parameters. As a result, it is becoming possible for instance to literally see through completely opaque complex media. We discuss a unified view of complex photonic media by means of a photonic interaction strength parameter. This parameter gauges the interaction of light with any complex photonic medium, and allows to compare complex media from different classes for similar applications.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2015
- DOI:
- 10.48550/arXiv.1504.06808
- arXiv:
- arXiv:1504.06808
- Bibcode:
- 2015arXiv150406808V
- Keywords:
-
- Physics - Optics;
- Condensed Matter - Mesoscale and Nanoscale Physics;
- Quantum Physics
- E-Print:
- 8 pages, 2 figures, Light Localisation and Lasing: Random and Quasi-Random Photonic Structures, Eds. M. Ghulinyan and L. Pavesi, (Cambridge Univ. Press, Cambridge, 2015) Ch. 1, p. 1