Joint universality for Lerch zeta-functions
Abstract
For $0<\alpha, \lambda \leq 1$, the Lerch zeta-function is defined by $L(s;\alpha, \lambda)$$:= \sum_{n=0}^\infty e^{2\pi i\lambda n} (n+\alpha)^{-s}$, where $\sigma>1$. In this paper, we prove joint universality for Lerch zeta-functions with distinct $\lambda_1,\ldots,\lambda_m$ and transcendental $\alpha$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2015
- DOI:
- 10.48550/arXiv.1503.06001
- arXiv:
- arXiv:1503.06001
- Bibcode:
- 2015arXiv150306001L
- Keywords:
-
- Mathematics - Number Theory;
- 11M35
- E-Print:
- 8 pages. P.2, L.11--12 are corrected