On the Cauchy problem of a two-dimesional Benjamin-Ono equation
Abstract
In this work we shall show that the Cauchy problem \begin{equation} \left\{ \begin{aligned} &(u_t+u^pu_x+\mathcal H\partial_x^2u+ \alpha\mathcal H\partial_y^2u )_x - \gamma u_{yy}=0 \quad p\in{\nat} &u(0;x,y)=\phi{(x,y)} \end{aligned} \right. \end{equation} is locally well-posed in the Sobolev spaces $H^s({\re}^2)$, $X^s$ and weighted spaces $X_s(w^2)$, for $s>2$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2015
- DOI:
- 10.48550/arXiv.1503.04290
- arXiv:
- arXiv:1503.04290
- Bibcode:
- 2015arXiv150304290P
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35Q53 37K10 35Q51 37K40