Transitive dendrite map with zero entropy
Abstract
Hoehn and Mouron [Ergod. Th. \& Dynam. Sys. (2014) \textbf{34}, 1897--1913] constructed a map on the universal dendrite that is topologically weakly mixing but not mixing. We modify the Hoehn-Mouron example to show that there exists a transitive (even weakly mixing) dendrite map with zero topological entropy. This answers the question of Baldwin [Topology (2001) \textbf{40}, 551--569].
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2015
- DOI:
- 10.48550/arXiv.1503.03035
- arXiv:
- arXiv:1503.03035
- Bibcode:
- 2015arXiv150303035B
- Keywords:
-
- Mathematics - Dynamical Systems;
- 37B20;
- 37B40;
- 37B45;
- 37E25
- E-Print:
- doi:10.1017/etds.2015.136