Generalized distance-squared mappings of $\mathbb{R}^{n+1}$ into $\mathbb{R}^{2n+1}$
Abstract
We classify generalized distance-squared mappings of $\mathbb{R}^{n+1}$ into $\mathbb{R}^{2n+1}$ ($n\ge 1$) having generic central points. Moreover, we show that there does not exist a universal bad set $\Sigma\subset (\mathbb{R}^{n+1})^{2n+1}$ in the case of this dimension-pair.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2015
- DOI:
- 10.48550/arXiv.1503.02355
- arXiv:
- arXiv:1503.02355
- Bibcode:
- 2015arXiv150302355I
- Keywords:
-
- Mathematics - Differential Geometry;
- 57R45;
- 58C25;
- 58K50
- E-Print:
- 10 pages