Rainbow domination and related problems on some classes of perfect graphs
Abstract
Let $k \in \mathbb{N}$ and let $G$ be a graph. A function $f: V(G) \rightarrow 2^{[k]}$ is a rainbow function if, for every vertex $x$ with $f(x)=\emptyset$, $f(N(x)) =[k]$. The rainbow domination number $\gamma_{kr}(G)$ is the minimum of $\sum_{x \in V(G)} |f(x)|$ over all rainbow functions. We investigate the rainbow domination problem for some classes of perfect graphs.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2015
- DOI:
- 10.48550/arXiv.1502.07492
- arXiv:
- arXiv:1502.07492
- Bibcode:
- 2015arXiv150207492H
- Keywords:
-
- Computer Science - Discrete Mathematics