Improved time-decay for a class of scaling critical electromagnetic Schrödinger flows
Abstract
We consider a Schrödinger hamiltonian $H(A,a)$ with scaling critical and time independent external electromagnetic potential, and assume that the angular operator $L$ associated to $H$ is positive definite. We prove the following: if $\|e^{-itH(A,a)}\|_{L^1\to L^\infty}\lesssim t^{-n/2}$, then $ \||x|^{-g(n)}e^{-itH(A,a)}|x|^{-g(n)}\|_{L^1\to L^\infty}\lesssim t^{-n/2-g(n)}$, $g(n)$ being a positive number, explicitly depending on the ground level of $L$ and the space dimension $n$. We prove similar results also for the heat semi-group generated by $H(A,a)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2015
- DOI:
- 10.48550/arXiv.1502.04987
- arXiv:
- arXiv:1502.04987
- Bibcode:
- 2015arXiv150204987F
- Keywords:
-
- Mathematics - Analysis of PDEs;
- Mathematics - Spectral Theory