A Space Weather Information Service Based Upon Remote and In-Situ Measurements of Coronal Mass Ejections Heading for Earth
Abstract
The Earth's magnetosphere is formed as a consequence of interaction between the planet's magnetic field and the solar wind, a continuous plasma stream from the Sun. A number of different solar wind phenomena have been studied over the past forty years with the intention of understanding and forecasting solar behavior. One of these phenomena in particular, Earth-bound interplanetary coronal mass ejections (CMEs), can significantly disturb the Earth's magnetosphere for a short time and cause geomagnetic storms. This publication presents a mission concept consisting of six spacecraft that are equally spaced in a heliocentric orbit at 0.72 AU. These spacecraft will monitor the plasma properties, the magnetic field's orientation and magnitude, and the 3D-propagation trajectory of CMEs heading for Earth. The primary objective of this mission is to increase space weather (SW) forecasting time by means of a near real-time information service, that is based upon in-situ and remote measurements of the aforementioned CME properties. The mission's secondary objective is to provide vital data to update scientific models. In-situ measurements are performed using a Solar Wind Analyzer instrumentation package and flux gate magnetometers, while coronagraphs execute remote measurements. Communication with the six identical spacecraft is realized via a deep space network consisting of six ground stations. They provide an information service that is in uninterrupted contact with the spacecraft, allowing for continuous SW monitoring. The data will be handled by a dedicated processing center before being forwarded to the SSA Space Weather Coordination Center who will manage the SW forecasting. The data processing center will additionally archive the data for the scientific community. The proposed concept mission allows for major advances in SW forecasting time and the scientific modelling of SW.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2015
- DOI:
- arXiv:
- arXiv:1502.01846
- Bibcode:
- 2015arXiv150201846R
- Keywords:
-
- Physics - Space Physics
- E-Print:
- 29 pages, 9 figures, accepted by the Journal of Space Weather and Space Climate