Deligne pairing and Quillen metric
Abstract
Let $X\rightarrow S$ be a smooth projective surjective morphism of relative dimension $n$, where $X$ and $S$ are integral schemes over $\mathbb C$. Let $L\rightarrow X$ be a relatively very ample line bundle. For every sufficiently large positive integer $m$, there is a canonical isomorphism of the Deligne pairing $\langle L ,\cdots , L\rangle\rightarrow S$ with the determinant line bundle ${\rm Det}((L- {\mathcal O}_{X})^{\otimes (n+1)}\otimes L^{\otimes m})$ \cite{PRS}. If we fix a hermitian structure on $L$ and a relative Kähler form on $X$, then each of the line bundles ${\rm Det}((L- {\mathcal O}_{X})^{\otimes (n+1)}\otimes L^{\otimes m})$ and $\langle L\, ,\cdots\, ,L\rangle$ carries a distinguished hermitian structure. We prove that the above mentioned isomorphism between $\langle L\, ,\cdots\, ,L\rangle\longrightarrow S$ and ${\rm Det}((L- {\mathcal O}_{X})^{\otimes (n+1)}\otimes L^{\otimes m})$ is compatible with these hermitian structures. This holds also for the isomorphism in \cite{BSW} between a Deligne paring and a certain determinant line bundle.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2015
- DOI:
- 10.48550/arXiv.1501.02539
- arXiv:
- arXiv:1501.02539
- Bibcode:
- 2015arXiv150102539B
- Keywords:
-
- Mathematics - Algebraic Geometry;
- Mathematics - Differential Geometry