On Fractional Schrodinger Equations in sobolev spaces
Abstract
Let $\sigma\in(0,1)$ with $\sigma\neq\frac{1}{2}$. We investigate the fractional nonlinear Schrödinger equation in $\mathbb R^d$: $$i\partial_tu+(-\Delta)^\sigma u+\mu|u|^{p-1}u=0,\, u(0)=u_0\in H^s,$$ where $(-\Delta)^\sigma$ is the Fourier multiplier of symbol $|\xi|^{2\sigma}$, and $\mu=\pm 1$. This model has been introduced by Laskin in quantum physics \cite{laskin}. We establish local well-posedness and ill-posedness in Sobolev spaces for power-type nonlinearities.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2015
- DOI:
- 10.48550/arXiv.1501.01414
- arXiv:
- arXiv:1501.01414
- Bibcode:
- 2015arXiv150101414H
- Keywords:
-
- Mathematics - Analysis of PDEs