Refined Eigenvalue Bounds on the Dirichlet Fractional Laplacian
Abstract
The purpose of this article is to establish new lower bounds for the sums of powers of eigenvalues of the Dirichlet fractional Laplacian operator $(-\Delta)^{\alpha/2}|_{\Omega}$ restricted to a bounded domain $\Omega\subset{\mathbb R}^d$ with $d=2,$ $1\leq \alpha\leq 2$ and $d\geq 3,$ $0< \alpha\le 2$. Our main result yields a sharper lower bound, in the sense of Weyl asymptotics, for the Berezin-Li-Yau type inequality improving the previous result in [36]. Furthermore, we give a result improving the bounds for analogous elliptic operators in [19].
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2015
- DOI:
- 10.48550/arXiv.1501.01335
- arXiv:
- arXiv:1501.01335
- Bibcode:
- 2015arXiv150101335Y
- Keywords:
-
- Mathematics - Analysis of PDEs;
- Primary 35P15;
- Secondary 35P20
- E-Print:
- 14 pages, 2 figures