Trace class criteria for Toeplitz and composition operators on small Bergman spaces
Abstract
We characterize the Schatten class Toeplitz operators induced by a positive Borel measure on the unit disc and the reproducing kernel of the Bergman space $A^2_\omega$, where $\omega$ is a radial weight satisfying the doubling property $\int_r^1\omega(s)\,ds\le C\int_{\frac{1+r}{2}}^1\omega(s)\,ds$. By using this, we describe the Schatten class composition operators. We also discuss basic properties of composition operators acting from $A^p_\omega$ to $A^q_v$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2014
- DOI:
- 10.48550/arXiv.1501.00131
- arXiv:
- arXiv:1501.00131
- Bibcode:
- 2015arXiv150100131A
- Keywords:
-
- Mathematics - Functional Analysis;
- Mathematics - Complex Variables
- E-Print:
- arXiv admin note: text overlap with arXiv:1406.2857