Anti-site disorder and improved functionality of Mn2NiX (X = Al, Ga, In, Sn) inverse Heusler alloys
Abstract
Recent first-principles calculations have predicted Mn2NiX (X = Al, Ga, In, Sn) alloys to be magnetic shape memory alloys. Moreover, experiments on Mn2NiGa and Mn2NiSn suggest that the alloys deviate from the perfect inverse Heusler arrangement and that there is chemical disorder at the sublattices with tetrahedral symmetry. In this work, we investigate the effects of such chemical disorder on phase stabilities and magnetic properties using first-principles electronic structure methods. We find that except Mn2NiAl, all other alloys show signatures of martensitic transformations in presence of anti-site disorder at the sublattices with tetrahedral symmetry. This improves the possibilities of realizing martensitic transformations at relatively low fields and the possibilities of obtaining significantly large inverse magneto-caloric effects, in comparison to perfect inverse Heusler arrangement of atoms. We analyze the origin of such improvements in functional properties by investigating electronic structures and magnetic exchange interactions.
- Publication:
-
Journal of Applied Physics
- Pub Date:
- October 2014
- DOI:
- 10.1063/1.4896906
- arXiv:
- arXiv:1410.1690
- Bibcode:
- 2014JAP...116m3903P
- Keywords:
-
- Condensed Matter - Materials Science
- E-Print:
- Journal of Applied Physics, Vol. 116, pg 133903 (2014)