Borderline gradient continuity of minima
Abstract
The gradient of any local minimiser of functionals of the type $$ w \mapsto \int_\Omega f(x,w,Dw)\,dx+\int_\Omega w\mu\,dx, $$ where $f$ has $p$-growth, $p>1$, and $\Omega \subset \mathbb R^n$, is continuous provided the optimal Lorentz space condition $\mu \in L(n,1)$ is satisfied and $x\to f(x, \cdot)$ is suitably Dini-continuous.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2014
- DOI:
- 10.48550/arXiv.1409.8122
- arXiv:
- arXiv:1409.8122
- Bibcode:
- 2014arXiv1409.8122B
- Keywords:
-
- Mathematics - Analysis of PDEs
- E-Print:
- 30 pages