On the rigidity theorems for Lagrangian translating solitons in pseudo-Euclidean space II
Abstract
Let $u$ be a smooth convex function in $\mathbb{R}^{n}$ and the graph $M_{\nabla u}$ of $\nabla u$ be a space-like translating soliton in pseudo-Euclidean space $\mathbb{R}^{2n}_{n}$ with a translating vector $\frac{1}{n}(a_{1}, a_{2}, \cdots, a_{n}; b_{1}, b_{2}, \cdots, b_{n})$, then the function $u$ satisfies $$ \det D^{2}u=\exp \left\{ \sum_{i=1}^n- a_i\frac{\partial u}{\partial x_{i}} +\sum_{i=1}^n b_ix_i+c\right\} \qquad \hbox{on}\qquad\mathbb R^n$$ where $a_i$, $b_i$ and $c$ are constants. The Bernstein type results are obtained in the course of the arguments.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2014
- DOI:
- 10.48550/arXiv.1409.5579
- arXiv:
- arXiv:1409.5579
- Bibcode:
- 2014arXiv1409.5579H
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 53A10;
- 53C44
- E-Print:
- 9 pages