Hopf-Galois extensions for monoidal Hom-Hopf algebras
Abstract
We investigate the theory of Hopf-Galois extensions for monoidal Hom-Hopf algebras. As the main result of this paper, we prove the Schneider's affineness theorems in the case of monoidal Hom-Hopf algebras in terms of the theory of the total integral and Hom-Hopf Galois extensions. In addition, we obtain the affineness criterion for relative Hom-Hopf module associated with faithfully flat Hom-Hopf Galois extensions.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2014
- DOI:
- 10.48550/arXiv.1409.5184
- arXiv:
- arXiv:1409.5184
- Bibcode:
- 2014arXiv1409.5184C
- Keywords:
-
- Mathematics - Rings and Algebras
- E-Print:
- arXiv admin note: text overlap with arXiv:1405.6767 by other authors