Non-Symmetric Basic Hypergeometric Polynomials and Representation Theory for Confluent Cherednik Algebras
Abstract
In this paper we introduce a basic representation for the confluent Cherednik algebras H_{V}, H_{III}, H_{III}^{D_7} and H_{III}^{D_8} defined in arXiv:1307.6140. To prove faithfulness of this basic representation, we introduce the non-symmetric versions of the continuous dual q-Hahn, Al-Salam-Chihara, continuous big q-Hermite and continuous q-Hermite polynomials.
- Publication:
-
SIGMA
- Pub Date:
- December 2014
- DOI:
- 10.3842/SIGMA.2014.116
- arXiv:
- arXiv:1409.4287
- Bibcode:
- 2014SIGMA..10..116M
- Keywords:
-
- DAHA;
- Cherednik algebra;
- q-Askey scheme;
- Askey-Wilson polynomials;
- Mathematics - Quantum Algebra;
- Mathematical Physics;
- Nonlinear Sciences - Exactly Solvable and Integrable Systems;
- 33D80;
- 33D52;
- 16T99
- E-Print:
- SIGMA 10 (2014), 116, 10 pages