A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$
Abstract
In this paper, we consider $\alpha$-harmonic functions in the half space $\mathbb{R}^n_+$: \begin{equation} \left\{\begin{array}{ll} (-\Delta)^{\alpha/2} u(x)=0,~u(x)>0, & x\in\mathbb{R}^n_+, \\ u(x)\equiv 0, & x\notin \mathbb{R}^{n}_{+}. \end{array}\right. \end{equation} We prove that all the solutions have to assume the form \begin{equation} u(x)=\left\{\begin{array}{ll}Cx_n^{\alpha/2}, & \qquad x\in\mathbb{R}^n_+, \\ 0, & \qquad x\notin\mathbb{R}^{n}_{+}, \end{array}\right. \label{2} \end{equation} for some positive constant $C$.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2014
- DOI:
- 10.48550/arXiv.1409.4106
- arXiv:
- arXiv:1409.4106
- Bibcode:
- 2014arXiv1409.4106C
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35J99