Stability properties for quasilinear parabolic equations with measure data
Abstract
Let $\Omega$ be a bounded domain of $\mathbb{R}^{N}$, and $Q=\Omega \times(0,T).$ We study problems of the model type \[ \left\{ \begin{array} [c]{l}% {u_{t}}-{\Delta_{p}}u=\mu\qquad\text{in }Q,\\ {u}=0\qquad\text{on }\partial\Omega\times(0,T),\\ u(0)=u_{0}\qquad\text{in }\Omega, \end{array} \right. \] where $p>1$, $\mu\in\mathcal{M}_{b}(Q)$ and $u_{0}\in L^{1}(\Omega).$ Our main result is a \textit{stability theorem }extending the results of Dal Maso, Murat, Orsina, Prignet, for the elliptic case, valid for quasilinear operators $u\longmapsto\mathcal{A}(u)=$div$(A(x,t,\nabla u))$\textit{. }
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2014
- DOI:
- 10.48550/arXiv.1409.1518
- arXiv:
- arXiv:1409.1518
- Bibcode:
- 2014arXiv1409.1518B
- Keywords:
-
- Mathematics - Analysis of PDEs
- E-Print:
- arXiv admin note: substantial text overlap with arXiv:1310.5253