The effects of orbital inclination on the scale size and evolution of tidally filling star clusters
Abstract
We have performed N-body simulations of tidally filling star clusters with a range of orbits in a Milky Way-like potential to study the effects of orbital inclination and eccentricity on their structure and evolution. At small galactocentric distances Rgc, a non-zero inclination results in increased mass-loss rates. Tidal heating and disc shocking, the latter sometimes consisting of two shocking events as the cluster moves towards and away from the disc, help remove stars from the cluster. Clusters with inclined orbits at large Rgc have decreased mass-loss rates than the non-inclined case, since the strength of the disc potential decreases with Rgc. Clusters with inclined and eccentric orbits experience increased tidal heating due to a constantly changing potential, weaker disc shocks since passages occur at higher Rgc, and an additional tidal shock at perigalacticon. The effects of orbital inclination decrease with orbital eccentricity, as a highly eccentric cluster spends the majority of its lifetime at a large Rgc. The limiting radii of clusters with inclined orbits are best represented by the rt of the cluster when at its maximum height above the disc, where the cluster spends the majority of its lifetime and the rate of change in rt is a minimum. Conversely, the effective radius is independent of inclination in all cases.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- November 2014
- DOI:
- arXiv:
- arXiv:1409.0879
- Bibcode:
- 2014MNRAS.445.1048W
- Keywords:
-
- globular clusters: general;
- galaxies: kinematics and dynamics;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 9 pages, 9 figures, Accepted for publication in MNRAS