The first non-zero Neumann $p-$fractional eigenvalue
Abstract
In this work we study the asymptotic behavior of the first non-zero Neumann $p-$fractional eigenvalue $\lambda_1(s,p)$ as $s\to 1^-$ and as $p\to\infty.$ We show that there exists a constant $\mathcal{K}$ such that $\mathcal{K}(1-s)\lambda_1(s,p)$ goes to the first non-zero Neumann eigenvalue of the $p-$Laplacian. While in the limit case $p\to \infty,$ we prove that $\lambda_1(1,s)^{1/p}$ goes to an eigenvalue of the Hölder $\infty-$Laplacian.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2014
- DOI:
- 10.48550/arXiv.1409.0840
- arXiv:
- arXiv:1409.0840
- Bibcode:
- 2014arXiv1409.0840D
- Keywords:
-
- Mathematics - Analysis of PDEs
- E-Print:
- 18 pages