Global structure of radial positive solutions for a prescribed mean curvature problem in a ball
Abstract
In this paper, we are concerned with the global structure of radial positive solutions of boundary value problem$$\text{div}\big(\phi_{N}(\nabla v)\big)+\lambda f(|x|, v)=0 \text{in} B(R), v=0 \text{on} \partial B(R), $$where $\phi_{N}(y)=\frac{y}{\sqrt{1-|y|^{2}}}, y\in \mathbb{R}^{N}$, $\lambda$ is a positive parameter, $B(R)=\{x\in \mathbb{R}^{N} :|x|<R\}$, and $|\cdot|$ denote the Euclidean norm in $\mathbb{R}^{N}$. All results, depending on the behavior of nonlinear term $f$ near 0, are obtained by using global bifurcation techniques.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2014
- DOI:
- 10.48550/arXiv.1409.0070
- arXiv:
- arXiv:1409.0070
- Bibcode:
- 2014arXiv1409.0070M
- Keywords:
-
- Mathematics - Analysis of PDEs