Superconducting nanowires by electron-beam-induced deposition
Abstract
Superconducting nanowires can be fabricated by decomposition of an organometallic gas using a focused beam of Ga ions. However, physical damage and unintentional doping often result from the exposure to the ion beam, motivating the search for a means to achieve similar structures with a beam of electrons instead of ions. This has so far remained an experimental challenge. We report the fabrication of superconducting tungsten nanowires by electron-beam-induced-deposition, with critical temperature of 2.0 K and critical magnetic field of 3.7 T, and compare them with superconducting wires made with ions. This work is an important development for the template-free realization of nanoscale superconducting devices, without the requirement of an ion beam column.
- Publication:
-
Applied Physics Letters
- Pub Date:
- January 2015
- DOI:
- arXiv:
- arXiv:1408.6958
- Bibcode:
- 2015ApPhL.106d2601S
- Keywords:
-
- Condensed Matter - Mesoscale and Nanoscale Physics;
- Condensed Matter - Materials Science
- E-Print:
- 5 pages, 4 figures