Cartan-Eilenberg complexes and Auslander categories
Abstract
Let $R$ be a commutative noetherian ring with a semi-dualizing module $C$. The Auslander categories with respect to $C$ are related through Foxby equivalence: $\xymatrix@C=50pt{\mathcal {A}_C(R) \ar@<0.4ex>[r]^{C\otimes^{\mathbf{L}}_{R} -} & \mathcal {B}_C(R) \ar@<0.4ex>[l]^{\mathbf{R}\mathrm{Hom}_{R}(C, -)}}$. We firstly intend to extend the Foxby equivalence to Cartan-Eilenberg complexes. To this end, C-E Auslander categories, C-E $\mathcal{W}$ complexes and C-E $\mathcal{W}$-Gorenstein complexes are introduced, where $\mathcal{W}$ denotes a self-orthogonal class of $R$-modules. Moreover, criteria for finiteness of C-E Gorenstein dimensions of complexes in terms of resolution-free characterizations are considered.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2014
- DOI:
- 10.48550/arXiv.1408.6728
- arXiv:
- arXiv:1408.6728
- Bibcode:
- 2014arXiv1408.6728R
- Keywords:
-
- Mathematics - Category Theory;
- Mathematics - K-Theory and Homology
- E-Print:
- 19 pages. Comments and suggestions are appreciated