The Value of Using Big Data Technologies in Computational Social Science
Abstract
The discovery of phenomena in social networks has prompted renewed interests in the field. Data in social networks however can be massive, requiring scalable Big Data architecture. Conversely, research in Big Data needs the volume and velocity of social media data for testing its scalability. Not only so, appropriate data processing and mining of acquired datasets involve complex issues in the variety, veracity, and variability of the data, after which visualisation must occur before we can see fruition in our efforts. This article presents topical, multimodal, and longitudinal social media datasets from the integration of various scalable open source technologies. The article details the process that led to the discovery of social information landscapes within the Twitter social network, highlighting the experience of dealing with social media datasets, using a funneling approach so that data becomes manageable. The article demonstrated the feasibility and value of using scalable open source technologies for acquiring massive, connected datasets for research in the social sciences.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2014
- DOI:
- 10.48550/arXiv.1408.3170
- arXiv:
- arXiv:1408.3170
- Bibcode:
- 2014arXiv1408.3170C
- Keywords:
-
- Computer Science - Social and Information Networks;
- Physics - Physics and Society;
- J.4;
- H.2.8
- E-Print:
- 3rd ASE Big Data Science Conference, Tsinghua University Beijing, 3-7 August 2014