Derivation of nonlinear single-particle equations via many-body Lindblad superoperators: A density-matrix approach
Abstract
A recently proposed Markov approach provides Lindblad-type scattering superoperators, which ensure the physical (positive-definite) character of the many-body density matrix. We apply the mean-field approximation to such a many-body equation, in the presence of one- and two-body scattering mechanisms, and we derive a closed equation of motion for the electronic single-particle density matrix, which turns out to be nonlinear as well as non-Lindblad. We prove that, in spite of its nonlinear and non-Lindblad structure, the mean-field approximation does preserve the positive-definite character of the single-particle density matrix, an essential prerequisite of any reliable kinetic treatment of semiconductor quantum devices. This result is in striking contrast with conventional (non-Lindblad) Markov approaches, where the single-particle mean-field equations can lead to positivity violations and thus to unphysical results. Furthermore, the proposed single-particle formulation is extended to the case of quantum systems with spatial open boundaries, providing a formal derivation of a recently proposed density-matrix treatment based on a Lindblad-like system-reservoir scattering superoperator.
- Publication:
-
Physical Review B
- Pub Date:
- September 2014
- DOI:
- arXiv:
- arXiv:1408.1898
- Bibcode:
- 2014PhRvB..90l5140R
- Keywords:
-
- 72.10.-d;
- 73.63.-b;
- 85.35.-p;
- Theory of electronic transport;
- scattering mechanisms;
- Electronic transport in nanoscale materials and structures;
- Nanoelectronic devices;
- Condensed Matter - Mesoscale and Nanoscale Physics
- E-Print:
- 10 pages, 1 figure (submitted to Phys. Rev. B)