On conformally flat manifolds with constant positive scalar curvature
Abstract
We classify compact conformally flat $n$-dimensional manifolds with constant positive scalar curvature and satisfying an optimal integral pinching condition: they are covered isometrically by either $\mathbb{S}^{n}$ with the round metric, $\mathbb{S}^{1}\times \mathbb{S}^{n-1}$ with the product metric or $\mathbb{S}^{1}\times \mathbb{S}^{n-1}$ with a rotationally symmetric Derdziński metric.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2014
- DOI:
- 10.48550/arXiv.1408.0902
- arXiv:
- arXiv:1408.0902
- Bibcode:
- 2014arXiv1408.0902C
- Keywords:
-
- Mathematics - Differential Geometry
- E-Print:
- Proc. Amer. Math. Soc. 144 (2016), 2627-2634