Isospectral hermitian counterpart of complex nonhermitian Hamiltonianp2-gx4+a/x2
Abstract
In this paper we show that the non-Hermitian Hamiltonians $H=p^{2}-gx^{4}+a/x^2$ and the conventional Hermitian Hamiltonians $h=p^2+4gx^{4}+bx$ ($a,b\in \mathbb{R}$) are isospectral if $a=(b^2-4g\hbar^2)/16g$ and $a\geq -\hbar^2/4$. This new class includes the equivalent non-Hermitian - Hermitian Hamiltonian pair, $p^{2}-gx^{4}$ and $p^{2}+4gx^{4}-2\hbar \sqrt{g}x,$ found by Jones and Mateo six years ago as a special case. When $a=\left(b^{2}-4g\hbar ^{2}\right) /16g$ and $a<-\hbar^2/4,$ although $h$ and $H$ are still isospectral, $b$ is complex and $h$ is no longer the Hermitian counterpart of $H$.
- Publication:
-
Canadian Journal of Physics
- Pub Date:
- August 2013
- DOI:
- 10.1139/cjp-2012-0562
- arXiv:
- arXiv:1407.4633
- Bibcode:
- 2013CaJPh..91..599N
- Keywords:
-
- Mathematical Physics
- E-Print:
- 9 pages, 1 figure