On Montel and Montel-Popoviciu theorems in several variables
Abstract
We present an elementary proof of a general version of Montel's theorem in several variables which is based on the use of tensor product polynomial interpolation. We also prove a Montel-Popoviciu's type theorem for functions $f:\mathbb{R}^d\to\mathbb{R}$ for $d>1$. Furthermore, our proof of this result is also valid for the case $d=1$, differing in several points from Popoviciu's original proof. Finally, we demonstrate that our results are optimal.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2014
- DOI:
- 10.48550/arXiv.1407.0532
- arXiv:
- arXiv:1407.0532
- Bibcode:
- 2014arXiv1407.0532A
- Keywords:
-
- Mathematics - Classical Analysis and ODEs
- E-Print:
- 16 pages, submitted to a Journal