Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit
Abstract
Let $M$ be a compact $n$-dimensional Riemanian manifold, End($M$) the set of the endomorphisms of $M$ with the usual $\mathcal{C}^0$ topology and $\phi: M\to\mathbb{R}$ continuous. We prove that there exists a dense subset of $\mathcal{A}$ of End($M$) such that, if $f\in\mathcal{A}$, there exists a $f$ invariant measure $\mu_{\max}$ supported on a periodic orbit that maximizes the integral of $\phi$ among all $f$ invariant Borel probability measures.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2014
- DOI:
- 10.48550/arXiv.1406.7027
- arXiv:
- arXiv:1406.7027
- Bibcode:
- 2014arXiv1406.7027C
- Keywords:
-
- Mathematics - Dynamical Systems
- E-Print:
- To appear in Discrete Contin. Dyn. Sys. - A