On low-rank approximability of solutions to high-dimensional operator equations and eigenvalue problems
Abstract
Low-rank tensor approximation techniques attempt to mitigate the overwhelming complexity of linear algebra tasks arising from high-dimensional applications. In this work, we study the low-rank approximability of solutions to linear systems and eigenvalue problems on Hilbert spaces. Although this question is central to the success of all existing solvers based on low-rank tensor techniques, very few of the results available so far allow to draw meaningful conclusions for higher dimensions. In this work, we develop a constructive framework to study low-rank approximability. One major assumption is that the involved linear operator admits a low-rank representation with respect to the chosen tensor format, a property that is known to hold in a number of applications. Simple conditions, which are shown to hold for a fairly general problem class, guarantee that our derived low-rank truncation error estimates do not deteriorate as the dimensionality increases.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2014
- DOI:
- 10.48550/arXiv.1406.7026
- arXiv:
- arXiv:1406.7026
- Bibcode:
- 2014arXiv1406.7026K
- Keywords:
-
- Mathematics - Numerical Analysis;
- Quantum Physics