Density of smooth functions in variable exponent Sobolev spaces
Abstract
We show that if $p_-\geq 2$, then a sufficient condition for the density of smooth functions with compact support, in the variable exponent Sobolev space $W^{1,p(\cdot)}(\mathbb R^n)$, is that the Riesz potentials of compactly supported functions of $L^{p(\cdot)}(\mathbb R^n)$, are also elements of $L^{p(\cdot)}(\mathbb R^n)$. Using this result we then prove that the above density holds if (i) $p_-\geq n$ or if (ii) $2\leq p_-< n$ and $p_+<\frac{np_-}{n-p_-}$. Moreover our result allows us to give an alternative proof, for the case $p_-\geq 2$, that the local boundedness of the maximal operator and hence local log-H{ö}lder continuity imply the density of smooth functions with compact support, in the variable exponent Sobolev space $W^{1,p(\cdot)}(\mathbb R^n)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2014
- DOI:
- arXiv:
- arXiv:1406.5385
- Bibcode:
- 2014arXiv1406.5385K
- Keywords:
-
- Mathematics - Functional Analysis;
- 46E30;
- 46E35
- E-Print:
- To appear in Nonlinear Analysis TM&