A sharp constant for the Bergman projection
Abstract
For the Bergman projection operator $P$ we prove that $ \|P\|_{L^1(B,d\lambda)\rightarrow B_1}= \frac {(2n+1)!}{n!}.$ Here $\lambda$ stands for the invariant metric in the unit ball $B$ of $\mathbf{C}^n$, and $B_1$ denotes the Besov space with an adequate semi--norm. We also consider a generalization of this result. This generalizes some recent results due to Perälä.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2014
- DOI:
- 10.48550/arXiv.1406.4163
- arXiv:
- arXiv:1406.4163
- Bibcode:
- 2014arXiv1406.4163M
- Keywords:
-
- Mathematics - Complex Variables;
- Primary 45P05;
- Secondary 47B35
- E-Print:
- to appear in Canadian Mathematical Bulletin