Examples of non-commutative crepant resolutions of Cohen Macaulay normal domains
Abstract
Let $A$ be a Cohen-Macaulay normal domain. A non commutative crepant resolution (NCCR) of $A$ is an $A$-algebra $\Gamma$ of the form $\Gamma = End_A(M)$, where $M$ is a reflexive $A$-module, $\Gamma$ is maximal Cohen-Macaulay as an $A$-module and $gldim(\Gamma)_P = \dim A_P $ for all primes $P$ of $A$. We give bountiful examples of equi-characteristic Cohen-Macaulay normal local domains and mixed characteristic Cohen-Macaulay normal local domains having NCCR. We also give plentiful examples of affine Cohen-Macaulay normal domains having NCCR.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2014
- DOI:
- 10.48550/arXiv.1406.2540
- arXiv:
- arXiv:1406.2540
- Bibcode:
- 2014arXiv1406.2540P
- Keywords:
-
- Mathematics - Commutative Algebra;
- Mathematics - Algebraic Geometry;
- Mathematics - Rings and Algebras;
- 14B05;
- 14A22;
- 14E15;
- 13C14;
- 16E10