Joint Spectrum and Power Allocation for Multi-node Cooperative Wireless Systems
Abstract
Energy efficiency is a growing concern for wireless networks, not only due to the emerging traffic demand from smart devices, but also because of the dependence on the traditional unsustainable energy and the overall environmental concerns. The urgent call for reducing power consumption while meeting system requirements has motivated increasing research efforts on green radio. In this paper, we investigate a new joint spectrum and power allocation scheme for a cooperative downlink multi-user system using the frequency division multiple access scheme, in which arbitrary M base stations (BSs) coordinately allocate their resources to each user equipment (UE). With the assumption that multi-BS UE (user being served by multi-BS) would require the same amount of spectrum from these BSs, we conclude that when the number of multi-BS UEs is limited by M-1, the resource allocation scheme can always guarantee the minimum overall transmit power consumption while meeting the throughput requirement of each UE and also each BS's power constraint. Then, to decide the clusters of multi-BS UEs and the clusters of individual-BS UEs (users being served by individual BSs), we propose a UE-BS association scheme and a complexity reduction scheme. Finally, a novel joint spectrum and power allocation algorithm is proposed to minimize the total power consumption. Simulation results are presented to verify the optimality of the derived schemes.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2014
- DOI:
- 10.48550/arXiv.1405.5730
- arXiv:
- arXiv:1405.5730
- Bibcode:
- 2014arXiv1405.5730H
- Keywords:
-
- Computer Science - Information Theory;
- Computer Science - Networking and Internet Architecture
- E-Print:
- Submitted to IEEE Transactions on Mobile Computing