The conjugacy class number k(G) - a different perspective
Abstract
Let $G$ be a finite group. Let $k(G)$ denote the number of conjugacy classes of $G$ and let $m(G)$ denote the least positive integer $n$ such that the union of any $n$ distinct non-trivial conjugacy classes of $G$ together with the identity of $G$ is a subgroup of $G$. We prove that $m(G)=k(G)-1$ for all $m(G)\ge 2$.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2014
- DOI:
- arXiv:
- arXiv:1404.4835
- Bibcode:
- 2014arXiv1404.4835G
- Keywords:
-
- Mathematics - Group Theory
- E-Print:
- 2 pages