Development of Fiber Fabry-Perot Interferometers as Stable Near-infrared Calibration Sources for High Resolution Spectrographs
Abstract
We discuss the ongoing development of single-mode fiber Fabry-Perot (FFP) Interferometers as precise astro-photonic calibration sources for high precision radial velocity (RV) spectrographs. FFPs are simple, inexpensive, monolithic units that can yield a stable and repeatable output spectrum. An FFP is a unique alternative to a traditional etalon, as the interferometric cavity is made of single-mode fiber rather than an air-gap spacer. This design allows for excellent collimation, high spectral finesse, rigid mechanical stability, insensitivity to vibrations, and no need for vacuum operation. The device we have tested is a commercially available product from Micron Optics. Our development path is targeted towards a calibration source for the Habitable-Zone Planet Finder (HPF), a near-infrared spectrograph designed to detect terrestrial-mass planets around low-mass stars, but this reference could also be used in many existing and planned fiber-fed spectrographs as we illustrate using the Apache Point Observatory Galactic Evolution Experiment (APOGEE) instrument. With precise temperature control of the fiber etalon, we achieve a thermal stability of 100 $\mu$K and associated velocity uncertainty of 22 cm s$^{-1}$. We achieve a precision of $\approx$2 m s$^{-1}$ in a single APOGEE fiber over 12 hours using this new photonic reference after removal of systematic correlations. This high precision (close to the expected photon-limited floor) is a testament to both the excellent intrinsic wavelength stability of the fiber interferometer and the stability of the APOGEE instrument design. Overall instrument velocity precision is 80 cm s$^{-1}$ over 12 hours when averaged over all 300 APOGEE fibers and after removal of known trends and pressure correlations, implying the fiber etalon is intrinsically stable to significantly higher precision.
- Publication:
-
Publications of the Astronomical Society of the Pacific
- Pub Date:
- May 2014
- DOI:
- arXiv:
- arXiv:1403.6841
- Bibcode:
- 2014PASP..126..445H
- Keywords:
-
- Astrophysics - Instrumentation and Methods for Astrophysics;
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- 12 pages, 17 figures. Accepted in PASP