Segue 1: An Unevolved Fossil Galaxy from the Early Universe
Abstract
We present Magellan/MIKE and Keck/HIRES high-resolution spectra of six red giant stars in the dwarf galaxy Segue 1. Including one additional Segue 1 star observed by Norris et al., high-resolution spectra have now been obtained for every red giant in Segue 1. Remarkably, three of these seven stars have metallicities below [Fe/H] = -3.5, suggesting that Segue 1 is the least chemically evolved galaxy known. We confirm previous medium-resolution analyses demonstrating that Segue 1 stars span a metallicity range of more than 2 dex, from [Fe/H] = -1.4 to [Fe/H] = -3.8. All of the Segue 1 stars are α-enhanced, with [α/Fe] ~ 0.5. High α-element abundances are typical for metal-poor stars, but in every previously studied galaxy [α/Fe] declines for more metal-rich stars, which is typically interpreted as iron enrichment from supernova Ia. The absence of this signature in Segue 1 indicates that it was enriched exclusively by massive stars. Other light element abundance ratios in Segue 1, including carbon enhancement in the three most metal-poor stars, closely resemble those of metal-poor halo stars. Finally, we classify the most metal-rich star as a CH star given its large overabundances of carbon and s-process elements. The other six stars show remarkably low neutron-capture element abundances of [Sr/H] < -4.9 and [Ba/H] < -4.2, which are comparable to the lowest levels ever detected in halo stars. This suggests minimal neutron-capture enrichment, perhaps limited to a single r-process or weak s-process synthesizing event. Altogether, the chemical abundances of Segue 1 indicate no substantial chemical evolution, supporting the idea that it may be a surviving first galaxy that experienced only one burst of star formation.
This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile. Data herein were also obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.- Publication:
-
The Astrophysical Journal
- Pub Date:
- May 2014
- DOI:
- arXiv:
- arXiv:1403.6116
- Bibcode:
- 2014ApJ...786...74F
- Keywords:
-
- early universe;
- galaxies: dwarf;
- Galaxy: halo;
- Local Group;
- stars: abundances;
- stars: Population II;
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- ApJ, accepted, 20 pages (emulateapj), 9 figures